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Accurate Classification of Difficult Intubation by
Computerized Facial Analysis
Christopher W. Connor, MD, PhD,* and Scott Segal, MD, MHCM†

BACKGROUND: Bedside airway evaluation is conduced before anesthesia, but all current
methods perform modestly, with low sensitivity and positive predictive value. We hypothesized
that subjective features of patients’ anatomies improve anesthesiologists’ ability to predict
difficult intubation, and derived a computer model to do so, based on analysis of photographs of
patients’ faces.
METHODS: Eighty male patients were divided into 2 equal cohorts for model derivation and
validation. Each cohort consisted of 20 easy and 20 challenging intubations, defined as �1 attempt
by an operator with at least 12 months of anesthesia experience, grade 3 or 4 laryngoscopic view,
need for a second operator, or nonelective use of an alternative airway device. Photographs of each
subject’s face were analyzed by software that resolves each face into 61 facial proportions derived
from an algorithm that models the face as a single point in a 50-dimensional eigenspace. Each
parameter was tested for discriminatory ability by logistic regression, and combinations of 11
variables with P � 0.1, plus Mallampati class and thyromental distance, were tested exhaustively by
all possible binomial quadratic logistic regression models. Candidate models were cross-validated by
maximizing the product of the area under the receiver operating characteristic curves obtained in the
derivation and validation cohorts.
RESULTS: The best model included 3 facial parameters and thyromental distance. It correctly
classified 70 of 80 subjects (P � 10�8). In contrast, the best combination of Mallampati class
and thyromental distance correctly classified 47 of 80 (P � 0.073). Sensitivity, specificity, and
area under the curve for the computer model were 90%, 85%, and 0.899, respectively.
CONCLUSIONS: Computerized analysis of facial structure and thyromental distance can classify
easy versus difficult intubation with accuracy significantly outperforming popular clinical predic-
tive tests. (Anesth Analg 2011;112:84–93)

All patients undergoing preoperative evaluation are
assessed for anatomic features that might predict
difficulty in performing endotracheal intubation

under general anesthesia. Typically, at least 2 examinations
are used: the Mallampati (MP) test1,2 is performed and the
thyromental distance (TMD)3 is measured. The MP test
involves an examination of oropharyngeal structures that
are visible when the seated patient maximally opens the
mouth and extends the tongue without phonation. The
TMD is a measure of the space between the superior tip of
the thyroid cartilage and the inside of the tip of the
mandible. Both tests perform only modestly, with sensitiv-
ity of 30% to 60%, specificity of 60% to 80%, and positive
predictive value of only 5% to 20%.4 Even so, the combi-
nation of MP test and TMD performed better than any
other bedside screening test in a meta-analysis of 35 trials
studying �50,000 subjects.4 In practice, anesthesiologists
likely consider other subjective factors in anticipating a
difficult airway, including habitus, facial appearance, and

perhaps other poorly understood hunches. It is our belief
that this gestalt may outperform conventional airway
examinations.

In this study, we attempted to derive a computer model
that similarly classifies the ease or difficulty of endotracheal
intubation, from analysis of facial structure based on 3
photographs. The computer model was derived and vali-
dated against cohorts of patients with known airway
anatomy, identified at surgery to be either easy or difficult
to intubate. We hypothesized that this may allow an
improved airway examination tool to be derived.

METHODS
Recruitment of subjects at Brigham and Women’s Hospital
was performed in accordance with a protocol approved by
Partners Healthcare Human Research Committee. The pro-
tocol was noninvasive, requiring only a customary airway
examination, review of the anesthetic record, and photog-
raphy of the head and neck of the patient. Because the
protocol contained no risk of harm to the patient, approval
for recruitment by solely verbal consent was obtained from
the IRB. To limit any potential confounding effects of
gender and racial group in this initial study, only male
Caucasians were recruited.

Patients were defined as easy to intubate if their anes-
thetic record described a single attempt with a Macintosh 3
blade resulting in a grade 1 laryngoscopic view (full
exposure of the vocal cords).1,5 Difficult intubation was
defined by at least 1 of the following: �1 attempt by an
operator with at least 1 year of anesthesia experience, grade
3 or 4 laryngoscopic view on a 4-point scale,5 need for a
second operator, or nonelective use of an alternative airway
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device such as a bougie, fiberoptic bronchoscope, or intu-
bating laryngeal mask airway.6,7 We also calculated a
modified intubation difficulty scale (IDS),8 with the as-
sumption that subjective force applied during intubation
was increased when �1 attempt at direct laryngoscopy was
performed.

Patients meeting our entry criteria were identified by
examination of their anesthesia records in the postanes-
thesia care unit. Suitable patients were recruited postop-
eratively when adequately recovered from the effects of
anesthesia. Photographs were obtained either in the
postanesthesia care unit or on the ward on the first
postoperative day. Patients who had undergone head or
neck surgery were excluded. Patients in whom central
venous catheters or other interventions prevented full
view of the features of the face in frontal and profile
views were excluded. Patients who were neither easy nor
difficult to intubate by our criteria were not recruited. All
patients meeting entry criteria were recruited until the
recruitment goals were reached. Patients were informed
of their right to not participate in the study, but none
refused.

Data Acquisition
Eighty patients were recruited by cohorts. Forty patients
were used as the model derivation set and the other 40
patients were used as the model validation set. Each set
was composed of 20 easy to intubate and 20 difficult to
intubate subjects. Digital photographs of the head and neck
of each patient in frontal view and in left and right profiles
were obtained. Patient demographics (height, weight, age,
gender, type of surgery), MP class, TMD (in finger-
breadths), and the details regarding ease of intubation were
obtained from the anesthetic record. Any data found to be
absent from the record were collected by the authors at the
time of patient enrollment. Preoperative assessment of the
patients was performed in a Preoperative Anesthesia Test-
ing Clinic staffed by a small cadre of specially trained
preanesthetic nurse practitioners using a structured elec-
tronic medical record and under the direct supervision of
an experienced attending anesthesiologist. Because the
clinical assessments of MP test and TMD were performed
before surgery to determine the ease or difficulty of intu-
bation, the clinic staff was blinded to the ultimate cohort
assignation at the time of assessment. TMD was measured
in fingerbreadths with the head in a neutral position, as is
the usual clinical practice at our institution and elsewhere.9

The photographs were analyzed by facial structure
analysis software (FaceGen Modeller v3.3; Singular In-
versions, Toronto, Canada). This software uses an algo-
rithm to generate a mathematical model of the face based
on a weighted contribution of predetermined “eigen-
faces.” An example of a completed model is shown in
Figure 1 (image of the first author). The eigenface
method allows the structure of any particular individual
face to be expressed in an elegant and compact form.10

Each of the weighting values for the eigenfaces can be
considered to be a coordinate value, allowing the whole
physiognomy of an individual face to be represented
solely as a point in a 50-dimensional space.11 The facial
analysis software implements a further improvement to

the eigenface method, such that the weightings of the
eigenfaces can be specified in terms of descriptive (but
not directly measurable or observable) facial propor-
tions12,13 expressed as standard deviations from an an-
drogynous normal (Fig. 2) derived from a reference
population of 300 individuals.14 Table 1 shows the 61
descriptive facial proportions used. Some of these 61
indices are interdependent but it can be demonstrated
that this higher-dimensional model is related directly to
the underlying 50 eigenfaces by a straightforward linear
transformation.14

Statistical Analysis
Model Derivation
The task of recognizing the difficult intubation can be
conceived as the task of deriving an algorithm capable of
separating the points representing the cohort of easy pa-
tients from those representing the cohort of difficult pa-
tients within a defined variable space. Patients who were
easy to intubate were assigned a classification value of zero,
difficult to intubate patients a value of 1. All 61 variables
and the physical properties of MP test and TMD were
subjected to variable reduction by univariate analysis at
P � 0.1 (�2 distribution, G2 goodness-of-fit statistic).15

Those variables that individually showed a statistical trend
in discrimination between easy and difficult airways are
shown with an asterisk in Table 1 and were used as a subset
to derive the predictive model. Binomial logistic regression
to segregate the easy to intubate and difficult to intubate
cohorts16 was performed exhaustively on all possible vari-
able combinations of this reduced subset of variables using
a quadratic logit.17

The mathematical theory underlying the choice of the
quadratic logit function is described in Appendix A.
Briefly, the quadratic form of the logit uses both the value
of an input variable and its square. We chose this model
because we hypothesized that factors influencing difficulty
of intubation may not behave linearly, but instead be either
easier or harder on both sides of a central value. As an
example, one could hypothesize that if both the small jaw
length of micrognathia and the large jaw length of acro-
megaly suggest difficulty, then ease of intubation may be
optimum at some middle value and fall away on either
side. Furthermore, use of the quadratic logit does not
exclude that a linear relationship may be found, because
the fitting of the quadratic logit may produce a curve that
is locally straight over the region of interest. Hence, using
only data taken from the 40 patients in the model
derivation cohorts, each variable and its square were
used as inputs to a logit function in all possible combi-
nations of inclusion or noninclusion. The coefficients of
these logits were optimized to produce candidate mod-
els. The area under the curve (AUC) of the receiver
operating characteristic (ROC) of each candidate model
was calculated18 and stored as AUCderivation for that
candidate model. We selected models optimized for
AUC rather than raw accuracy because this technique is
more robust with regard to future data.19

Model Validation
Model validation was then performed to avoid choosing a
candidate model that is overfitted to the derivation dataset.
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The candidate models produced in the model derivation
stage were applied without further adjustment to the data
taken from the 40 patients in the model validation cohorts,
producing an AUCvalidation for each candidate model.

Final model selection was performed by choosing the
candidate model with the maximum value of AUCderivation �

AUCvalidation. This method excludes models that show evi-
dence of overfitting, a problem with large variable spaces. The
mathematics underlying the rationale of AUC product maxi-
mization are described in Appendix B. Briefly, using the
observation that any overfitting to gain performance in one
subset will lead to a comparable loss of performance in a

Figure 1. Computer reconstruction of the head
from profile and face-on photographs (image of first
author).

Figure 2. Appearance of the average head
of the reference population.

Facial Analysis to Classify Difficult Intubation
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subsequent subset, product maximization creates a measure
in which any apparent overfitting is penalized.

The sensitivity and specificity of the selected model
were calculated. The P value of the model was determined
by its classification accuracy (exact binomial distribution)
and the Bonferroni correction for multiple tests was applied
(MATLAB; MathWorks, Natick, MA).

Facial Structure Test-Retest Validation
The facial structure analysis software requires some user
interaction to place certain fiducial markers on the images
to guide reconstruction. Ten patients were selected at
random from the 80 study patients and their photographs
were rerendered into 3-dimensional models to test the
reproducibility of the reconstruction process.

RESULTS
Of the 61 descriptive facial proportions and the physical
properties of MP test and TMD, 11 showed a univariate
statistical trend in discriminating between easy and diffi-
cult intubations. These 11 variables, shown with an asterisk
in Table 1, were evaluated as possible inputs to the model,
producing a total of 211 � 1 � 2047 candidate models. The
final model was chosen by AUC product maximization and
found to depend on only 3 facial proportions plus TMD, as
marked with a superscript “a” in Table 1. The parameters of
the model are stated numerically in Appendix C. Relative
to the population normal shown in Figure 2, the variations
in facial appearance described by the 3 facial proportions
used in the airway algorithm are shown in Figure 3.

Clinical Interpretation of the Model
Figure 4 shows the classification and statistical behavior of
the algorithm when applied to the model derivation data-
set, the validation dataset, and the 2 datasets combined.
The algorithm successfully clusters the easy and difficult
airways toward opposite ends of the logit curve (Fig. 4, A,
C, and E). ROC curves were constructed for each test

Figure 3. Variations in facial appearance from the average head shown in Figure 2 by standard deviations of the descriptive facial proportions
used in the airway algorithm. � is the standard deviation from the normal head derived from 300 individuals.

Table 1. The 61 Variables Defining Photographic
Reconstruction of the Head
Descriptive facial proportions
Brow ridge: high/low Jaw: retracted/jutting
Brow ridge inner: down/up Jaw: wide/thin
Brow ridge outer: up/down* Jaw: neck slope high/low*a

Cheekbones: low/high Jawline: concave/convex
Cheekbones: shallow/pronounced Mouth: drawn/pursed
Cheekbones: thin/wide Mouth: happy/sad
Cheeks: concave/convex Mouth: lips deflated/inflated
Cheeks: round/gaunt Mouth: lips large/small
Chin: forward/backward Mouth: lips puckered/retracted
Chin: pronounced/recessed Mouth: lips thin/thick
Chin: retracted/jutting Mouth: protruding/retracted
Chin: shallow/deep Mouth: tilt up/down
Chin: small/large Mouth: underbite/overbite
Chin: tall/short Mouth: up/down*
Chin: wide/thin* Mouth: wide/thin
Eyes: down/up* Mouth: chin distance, short/long*
Eyes: small/large Nose: bridge shallow/deep
Eyes: tilt inward/outward* Nose: bridge short/long
Eyes: apart/together Nose: down/up
Face: brow-nose-chin ratio*a Nose: flat/pointed
Face: forehead-sellion-nose ratio Nose: nostril tilt down/up*
Face: heavy/light Nose: nostrils small/large
Face: round/gaunt Nose: nostrils wide/thin
Face: tall/short Nose: region concave/convex
Face: up/down Nose: sellion down/up
Face: wide/thin Nose: sellion shallow/deep (1)
Forehead: small/large Nose: sellion shallow/deep (2)
Forehead: tall/short Nose: sellion thin/wide
Forehead: tilt forward/back Nose: short/long
Head: thin/wide Nose: tilt down/up*a

Temples: thin/wide

Thyromental distance*a Mallampati class

The thyromental distance and Mallampati class are included in the table as 2
further variables that were used for modeling.
* Demonstrated at least a statistical trend (P � 0.1) with identified difficult
intubation.
a Appear in the final model.
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population and are shown adjacent to the classification
behavior (Fig. 4, B, D, and F). Table 2 contains the numeri-
cal representations of these statistical properties. The per-
formance of the algorithm is stated in terms of its accuracy
as a binomial classifier, allowing calculation of P values
according to the binomial distribution. In selecting a model
based on the data, the problem of multiple comparisons
must be addressed. Because 11 variables participated in
generation of the model, and all possible combinations of
models were exhaustively evaluated, each variable partici-
pated in 210 models. Application of the Bonferroni correc-
tion for these multiple comparisons still yielded highly
significant P values (Table 2). When applied to the com-
bined dataset, the performance of the airway classification
algorithm showed a sensitivity of 90% and a specificity of
85%. The area under the ROC curve (AUC) was 89.9%.
When applied to the combination of all easy patients and

only those difficult patients with an IDS score8 �5, the
model correctly classified 89%, with a sensitivity of 96%,
specificity 85%, and AUC 90.2%.

The MP test did not show a statistical trend with ease or
difficulty of intubation and so did not form part of the
described process of model selection. Even when the MP
test was explicitly forced into the reduced set of variables,
it did not affect the final model selection and so inclusion of
MP test did not add further predictive information.

To allow comparison of the model to classical airway
assessment tools, the ability of the MP test and TMD to
classify difficult intubation was tested against the study
population. Table 3A shows the statistical performance of
the MP test and TMD both alone and together when used
as variables for the quadratic logit model. This analysis
ascertained the maximum performance of these tests when
their thresholds are allowed to be optimized against the

Figure 4. Classification and statistical be-
havior of the airway algorithm. Panels A, C,
and E show the logit function and calculated
values [L(z)] for the studied faces in the
derivation, validation, and combined co-
horts, respectively. Panels B, D, and F show
the associated receiver operating character-
istic (ROC) curves for each cohort.

Facial Analysis to Classify Difficult Intubation
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model derivation data in the same manner used in the
derivation of the new airway model. The classical tools
nevertheless demonstrate substantially weaker perfor-
mance than the model (57 of 80 correctly classified, Fisher
exact test, P � 0.018 for difference from computer model).
Table 3B shows the performance of the MP test and TMD
when used in the usual clinical manner with their classi-
cally ascribed thresholds, without the inclusion of a
squared term. The performance here is again inferior and
the greatest achieved accuracy of 47 of 80 did not rise to the
level of statistical significance when compared with chance
(P � 0.073, exact binomial distribution) and was inferior to
the computer model (P � 0.0001, Fisher exact test).

Because this new airway model describes appearance, it
is possible to generate pictures of faces that would appear
to have certain degrees of ease or difficulty of intubation.
Figure 5A illustrates the head that is theoretically most
difficult to intubate according to the model. Figure 5B
represents a head that the model would classify as easy to
intubate. The parameter values for this head are set such
that the value produced by the model is of the same

magnitude but opposite to Figure 5A. Figure 5B might
therefore be considered to represent a patient as easy to
intubate as the patient in Figure 5A would be difficult.

Mathematical Interpretation of the Model
A mathematical interpretation of the model is given in
Appendix C, which gives a more precise interpretation of
the meaning of the various parameters and the resulting
logit calculated by the model.

Facial Structure Test-Retest Validation
A correlation coefficient of r � 0.80 was established across
the 610 variables, indicating a high degree of reproducibil-
ity. The classifications (predicted easy versus difficult) of
these 10 patients by the algorithm described in Appendix C
were unchanged by rerendering.

DISCUSSION
In our study, computerized facial structure analysis com-
bined with a widely used bedside airway evaluation
method yielded a model that significantly outperformed

Table 2. Statistical Performance Measures for the Airway Algorithm
Statistical properties Derivation set Validation set Combineda Combined easy and IDS score >5b

Sensitivity 0.9 0.9 0.9 0.96
Specificity 0.9 0.8 0.85 0.85
True positives 18 18 36 24
True negatives 18 16 34 34
False positives 2 4 6 6
False negatives 2 2 4 1
Accuracy (correct/total) 36/40 34/40 70/80 58/65
Exact binomial probability test P � 9.29 � 10�7 P � 4.18 � 10�6 P � 1.58 � 10�12 P � 2.14 � 10�11

Bonferroni correction 210 210 210 210

Corrected probability P � 9.51 � 10�4 P � 4.28 � 10�3 P � 1.62 � 10�9 P � 2.19 � 10�8

IDS � intubation difficulty scale.
a The combination of both the derivation set and validation set.
b The set of all easy patients with all difficult patients for whom an IDS score �5 was estimated (n � 65).

Table 3A. Statistical Performance Measures of Classical Airway Assessment Tools When Optimized with
Respect to the Study Model Derivation Population

Statistical properties

Mallampati test Thyromental distance Bivariate model (MP and TMD)

Derivation Validation Derivation Validation Derivation Validation
Sensitivity 0.4 0.1 0.85 0.8 0.8 0.65
Specificity 0.85 0.9 0.5 0.5 0.7 0.7
True positives 8 2 17 16 16 13
True negatives 17 18 10 10 14 14
False positives 3 2 10 10 6 6
False negatives 12 18 3 4 4 7
Accuracy 25/40 20/40 27/40 26/40 30/40 27/40

Table 3B. Performance of Classical Airway Assessment Tools Alone and in Combination When Used with
Their Frequently Ascribed Thresholds
Statistical properties MP score >3 TMD <3 MP score >3 and TMD <3 MP score >3 or TMD <3
Sensitivity 0.25 0.125 0.05 0.325
Specificity 0.875 0.925 0.95 0.85
True positives 10 5 2 13
True negatives 35 37 38 34
False positives 5 3 2 6
False negatives 30 35 38 27
Accuracy 45/80 42/80 40/80 47/80

MP � Mallampati; TMD � thyromental distance.
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popular clinical predictive tests. Our model accurately
classified 70 of 80 airways compared with 47 of 80 for MP
test plus TMD using classical thresholds.1,3,5

Use of a bedside examination to predict difficult intuba-
tion is considered the standard of care in modern anesthe-
siology practice. It has been incorporated into the difficult
airway algorithm of not only the American Society of
Anesthesiologists7 and those of several other countries,20

but also most recently into the World Health Organization
Surgical Safety Checklist,21 the use of which is being
encouraged in every operating room in the world. Unfor-
tunately, all easily performed examination systems in clini-
cal practice perform only modestly, with sensitivities of
20% to 62%, specificities of 82% to 97%, and very low
positive predictive values, generally �30%, unless very
liberal definitions of difficulty are used.22 There are likely a
number of reasons for this poor performance, including the
relative rarity of difficult intubation,22 the multifactorial
etiology and varying definition of difficult intubation,
interobserver variability in test results,23,24 failure to vali-
date potential systems in patients independent of those
used to derive the test,22 and the inadequacy of the tests
themselves. Conversely, experienced anesthesiologists al-
most certainly use cues other than those derived from
formal bedside tests to formulate their clinical impression
of the ease of intubating any given patient. There may be a
large number of anatomic factors that enter into such a
judgment.25 However, bedside scores based on such factors

have not proven to be accurate.4 Indeed, getting anesthesi-
ologists to pay attention to the airway may be the principal
benefit of routinely performing airway examinations before
induction.22

Our study differs from previous work using facial
imaging to evaluate the airway. Suzuki et al.26 used digital
photographs of subjects’ faces to calculate 5 ratios and
angles from measurements derived from placement of
anatomic markers on the photographs. They found one, the
“submandibular angle,” to be correlated with difficult
tracheal intubation. They also used morphing software to
construct “average” easy and difficult to intubate faces,
which we believe bear some subjective resemblance to our
Figure 5. Similarly, Naguib et al.27 measured 22 indices
from plain radiographs and 8 from 3-dimensional com-
puted tomographic scans of the head in patients who were
easy or difficult to intubate. They constructed a model
containing 3 bedside tests (MP test, TMD, and thyroster-
nal distance) and 2 radiographic features that accurately
separated the easy and difficult cohorts with an AUC of
the ROC curve of 0.97. Both of these previous investiga-
tions, however, used a priori assumptions of which
anatomic features might relate to difficult laryngoscopy
and intubation. Both also required actual measurement
of anatomic features. In contrast, our method modeled
the entire physiognomy of the face with no such assump-
tions and no direct measurements. Moreover, the method

Figure 5. A, Appearance of the face rated
most difficult to intubate by the algorithm,
defined by x � [2.995, �13.683, 0.557,
2.032], where the values of the vector refer,
respectively, to face (brow-nose-chin ratio),
jaw-neck (slope high/slope low), nose (tilt
down/tilt up), and thyromental distance (fin-
gerbreadths). B, Appearance of a face rated
easy to intubate. The ease is comparable in
magnitude to the difficulty associated with
Figure 4A, defined by x � [�1.06, 4.85,
�0.20, 4], where the values of the vector
refer, respectively, to face (brow-nose-chin
ratio), jaw-neck (slope high/slope low), nose
(tilt down/tilt up), and thyromental distance
(fingerbreadths).

Facial Analysis to Classify Difficult Intubation
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does not require time-consuming and potentially danger-
ous radiographs. If implemented on high-speed comput-
ers, perhaps accessed by end users transmitting images
of patients over a network, our model could be used for
rapid bedside or field assessment of the airway, even by
inexperienced practitioners.

Our study has several limitations. First, it is likely that
there are causes of difficult intubation not included in our
study cohorts. For example, some patients with limited
neck mobility but otherwise normal airways are difficult to
intubate.28 Further refinement of the model could include
subjective or measured indices of neck extension, or indeed
other predictors of difficult intubation such as body mass
index. Second, we measured TMD in the neutral position
rather than full neck extension, and we used fingerbreadths
rather than measured distance. This is the method in
routine use in our institution but some evidence suggests
measuring TMD in extension is more predictive of intuba-
tion difficulty29 and, although popular, fingerbreadth mea-
surements are inferior to ruler measurements.9 Conversely,
if the model included this potentially inferior measure-
ment, refining it by using full-extension TMD could only
improve performance of the model. Third, we sought to
eliminate potential racial or gender-based confounding by
confining our sample to Caucasian males. Finally, because
photographs were obtained postoperatively, we cannot
entirely exclude the possibility of changes in facial appear-
ance caused by anesthesia and surgery. Only a large,
prospective study in a diverse patient population would be
able to verify the performance of our model in general
clinical use. It is encouraging that the model predicts ease
in the computerized normal face, and that it performs
better than bedside tests within the study cohorts. It is also
possible that deriving and validating it within a larger
fraction of the difficult airway “space” could further refine
the model.

Another potential limitation is the method used to
categorize the subjects as easy or difficult to intubate. We
used a liberal definition of difficult intubation, which
causes the positive predictive value to increase. In real-
world clinical use, anesthesiologists are likely more
interested in very difficult intubation, and the positive
predictive value will be lower, as it is for all difficult
airway predictive methods. Conversely, use of a liberal
definition makes the statistical task of separating the easy
and difficult cohorts more difficult, not less so,22 because
the 2 groups of patients are more similar. This makes the
strong performance of our model notable. Moreover, the
model performed even better in the subset of patients with
an IDS score �5, who had comparatively more difficult
intubations. However, it is decidedly problematic to infer
the comparative difficulty of an intubation from the after-
the-fact description of the technical maneuvers required to
manage that airway.6 For example, would an intubation
achieved over a bougie on the third attempt be considered
more or less difficult than one in which the anesthesiologist
decided to use a video technique after the first unsuccessful
attempt? Even presuming equally experienced laryngosco-
pists, the comparison is confounded by differences in
comfort with, and availability of, other adjunct techniques.
This ambiguity also complicates the use of research tools

such as IDS score, which, for example, could be low (and
thus descriptive of an easy intubation) in a patient in whom
a single direct laryngoscopy produced a poor view and
who was then intubated fiberoptically.

The clinical utility of our methodology and model
remains an important research question. First, technical
issues would need to be solved. The software currently
requires approximately 15 minutes to model each face from
digital photographs. It relies presently on a relatively
inefficient iterative algorithm to do so, and exerts consid-
erable computing power on modeling the coloration and
texture of the skin. Certainly, a more efficient one could be
written, particularly if only a few parameters need to be
derived to predict difficult intubation. Indeed, we have a
prototype algorithm that can analyze a face, derive the
relevant parameters, and calculate the intubation predic-
tion in less than 1 minute (data not shown). If proven
practical for widespread clinical use, this would represent a
significant advance over previously published methods
involving offline measurements taken from radiographs or
photographs. Second, the computing power required is
modest but exceeds that of current handheld devices. We
envision that clinical use of our model would be most
efficiently deployed using high-speed computers accessible
to clinicians over a network, perhaps using handheld
computers or smartphones incorporating digital cameras as
input devices. Third, the requirement for manual place-
ment of fiducial markers to guide reconstruction is a
potential source of user error. However, it is encouraging
that our test-retest results revealed no cases in which the
overall judgment of ease or difficulty of intubation varied.
Finally, the performance of the model should be compared
with that of experienced clinicians given similar data. The
model would be particularly useful if it could predict
difficult intubation when an experienced clinician had not
suspected it, a more dangerous clinical situation than the
converse error of judgment. If the model outperforms
human experts, then its applicability would potentially be
quite broad and would include even seasoned anesthesi-
ologists. Conversely, if human operators can match the
model’s performance, then the software may be of greater
utility to nonairway experts. This assessment is an area of
active research by our group.

In summary, the model presented herein significantly
outperformed the current standard of the combination of
MP and TMD examinations, and is based on quantification
of facial anatomy performed by an unbiased computer
algorithm. Additional work should define the ability of
experienced clinicians presented with similar photographs
and bedside airway examination results, and the ability of
the computer model to prospectively predict difficult intu-
bation in a large and diverse patient population. If the
superiority of the method can be confirmed, the model
could represent an important advance in the assessment of
the airway.

Appendix A: A Real-World Representation of the
Quadratic Logit
The quadratic logit function admits both the value of a
parameter and its square:
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L�z� �
1

1 � e�z
where z � b0 � b1x1 � b2x1

2 � b3x2 � b4x2
2

� … (A1)

Completing the squares, we can equivalently write:

z � �0 � �1 �x1 � �1�
2 � �2�x2 � �2�

2 � … (A2)

And hence:

z � �0 � 	1

�x1 � �1�
2

2�1
2

� 	2

�x2 � �2�
2

2�2
2

� … (A3)

where 	i takes only the values �1, without which �i would
be imaginary if �i � 0.

Note that in equation (A1), the term z becomes the
exponent. It is useful to recall the probability distribution
function of the normal distribution:


�i�i
2�x� �

1
��2�

e�
�x � ��2

2�2 (A4)

The similarity between the 2 equations suggests that an
alternative, probabilistic, interpretation of the quadratic
logit function is possible. It can be shown that the output of
the logit function L(z) can be written as a weighting of
normal probability distributions of the inputs xi:

L�z� �
�

i�	1

�i,�i

2�xi�

�
i�	1


�i,�i
2�xi� � C � �

i��1

�i,�i

2�xi�
(A5)

where C is a numerical constant determined by the model,
defined as:

C �
�

i��1
��i�2��

�
i�	1

��i�2��
e � �0 (A6)

Equation (A5) is a curious result, because we believe it
mathematically describes a mental process similar to that
performed by anesthesiologists given the task of assess-
ing an unknown airway. The combination of factors
favorable to intubation are weighed against the counter-
vailing unfavorable factors and, based on their relative
preponderance, a decision is reached with some greater
or lesser degree of confidence. The apparent artificiality
of the quadratic logit model thus leads to a surprisingly
natural result.

Appendix B: Cross-Validation by Product of Area
Under the Curve
We measure the performance of a model by the area under
the curve (AUC) on its receiver operating characteristic
plot. A cross-validation and model selection technique is
required that can relatively suppress models that show
evidence of overfitting.

Let us suppose that some ideal, optimal model exists,
and that this model has an AUC of AUCideal. It will likely
be possible to produce some other model that seems to
perform better on the model derivation set. However,
because this model is by definition not the ideal model, its

performance must have been artificially improved by over-
fitting. Let us define the AUC of this model as AUCideal 	
�0, where �0 represents the performance erroneously ob-
tained through overfitting.

Now, consider the model validation dataset. We would
expect that the ideal model would have an AUC of
AUCideal when tested against either dataset. If the datasets
are sufficiently large, then we can expect that any improve-
ment in performance that was erroneously obtained by
overfitting in the derivation set will appear as an equal
penalty in the validation set. Therefore, the model with an
AUC of AUCideal 	 �0 in the derivation set should have an
AUC of approximately AUCideal � �0 in the validation set.
The effect of �0 must be symmetric in this way because if
this were not so it would imply that some residual infor-
mation is available that could be used to improve AUCideal,
contradicting the initial statement that AUCideal is the
optimal model.

Although we cannot know the values of either AUCideal

or �0, we can use them as the basis for selecting the best
candidate models by maximizing the product of the AUCs
for the derivation and validation set, i.e.:

AUCderivation � (AUCideal � �0) (B1)

AUCvalidation � (AUCideal � �0) (B2)

AUCderivation � AUCvalidation � (AUCideal � �0)(AUCideal � �0)

� AUCideal
2 � �0

2 (B3)

The value of equation (B3) is maximized only when �0 � 0,
describing no overfitting. The candidate model that gener-
ates the greatest AUC product as defined by equation (B3)
is therefore likely to be the model that most closely approxi-
mates the theoretically ideal model and has the least
overfitting.

Appendix C: Mathematical Interpretation of the
Final Logistic Model
The parameters of the selected airway classification model
are given in the following table:

The terms in the model are likewise defined as:

L�z� �
1

1 � e�z
, in which z � �0 � 	1

�x1 � �1�
2

2�1
2

� 	2

�x2 � �2�
2

2�2
2

� … (C1)

The value of L(z) is always within the range of 0 to 1 and
is the predicted likelihood of belonging to class 1. The value
of 1 � L(z) is the predicted likelihood of belonging to class

Parameter x � � �

Face (brow-nose-chin ratio) 2.995 2.417 	1
Jaw-neck (slope high/slope low) �13.683 3.255 	1
Nose (tilt down/tilt up) 0.557 0.735 	1
Thyromental distance (fingerbreadths) 2.032 0.738 	1
Greatest modeled difficulty (logit units) �0 � 10.85
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0. Therefore, if L(z) is �0.5, then the patient is predicted as
class 0 (easy to intubate) and if L(z) is �0.5, then the patient
is predicted as class 1 (difficult to intubate). The meanings
of the parameters of the model are defined fully in Appen-
dix A, but can also be described simply. In the quadratic
logit model, the � terms identify the apex of the quadratic
curve, and the � terms represent the steepness of the sides
of the curve. The variable 	 defines whether ease of
intubation improves (	1) or worsens (�1) as the value of
the variable moves away from �. As 	 � 	1 for all terms, �0

describes the value in logit units that would be produced
by the head that is most difficult to intubate according to
the model, as shown in Figure 5A.

When the derivation and validation data contain such a
high prevalence of difficult intubations, one might be
suspicious that an algorithm produced from that data
might overcall the prevalence of difficult intubation in the
general population. We can address this concern by calcu-
lating the predicted difficulty of the average head, to which
the model had not previously been exposed. The average
head (Fig. 2) is defined as the head for which all observable
parameters have 0 deviance from the population normal,16

and hence for which all the values of x for observable
parameters in the model are 0. Assigning a thyromental
distance of 4 fingerbreadths, we calculate z � �2.60, and
therefore L(z) for the average face is 0.069, which suggests a
likelihood of 93.1% that the average head will be easy to
intubate.

Furthermore, the meaning of the value L(z) returned by
the model is unclear beyond its definition as a binomial
classifier above and below L(z) � 0.5. It is tempting but
untested to conclude that the magnitude of L(z) predicts
the degree of difficulty. This would be to impose a further
level of structural meaning, to say that those points that lie to
the upper right of the distribution in the logit plots of Figure
4 represent not just difficult intubations but instead represent
intubations comparatively “more difficult” than those repre-
sented by points lying closer to the center. The present
investigation cannot address this intriguing possibility, and
the difficulty in testing it against agreed upon clinical defini-
tions will complicate future attempts to do so.
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